Przejdź do głównej treści

Widok zawartości stron Widok zawartości stron

Proteomika i Spektrometria Mas

Core Facility

Widok zawartości stron Widok zawartości stron

Pracownia Proteomiki i Spektrometrii Mas

Pracownia Proteomiki i Spektrometrii Mas

Proteomics and Mass Spectrometry Core Facility provides proteomic services to the researchers from the Jagiellonian University and to external users from academia and industry.

Proteomics and Mass Spectrometry Core Facility provides proteomic services to the researchers from the Jagiellonian University and to external users from academia and industry. We apply state-of-the-art methods for analyzing peptides and proteins, including their post-translational modifications (PTMs). We perform complete proteomic workflow that includes sample preparation, mass spectrometry measurement and data analysis.

dr Urszula Jankowska

dr Urszula Jankowska

Core Facility Leader

Personal informations:

https://orcid.org/0000-0002-7165-8964

https://www.linkedin.com/in/urszula-jankowska-69548884/

 

więcej o dr Urszula Jankowska

Dr Bożena Skupień-Rabian

Technician
E-mail: bozena.skupien-rabian@uj.edu.pl

 

Weronika Waluś

Part-time Technician
E-mail: weronika1.walus@uj.edu.pl

 

Q Exactive (Thermo Scientific)

Q Exactive (Thermo Scientific)

It is a hybrid mass spectrometer, which  combines high-performance quadrupole precursor selection with high-resolution, accurate-mass Orbitrap™ detection. Principally used for protein identification and quantification in complex samples (e.g. cell lysates), as well as identification of post-translational modifications.

 

micrOTOF-Q II (Bruker Daltonics)

micrOTOF-Q II (Bruker Daltonics)
It is used to measure molecular weight of intact proteins, peptides or nucleic acid fragments.

 

Proteomics and Mass Spectrometry Core Facility provides proteomic services to the researchers from the Jagiellonian University and to external users from academia and industry. We apply state-of-the-art methods for analyzing peptides and proteins, including their post-translational modifications (PTMs). We perform complete proteomic workflow that includes sample preparation, mass spectrometry measurement and data analysis. We also offer support in the conceptual design of experiments to apply the best strategy for each research question.

Figure 1. Scheme of the proteomic workflow and methodology available at the Proteomics and Mass Spectrometry CF. Among the variety of options, we recommend an optimal procedure fora given scientific question.

 

 

 

Proteomics is a comprehensive, large-scale analysis of the entire protein complement of a cell line, tissue, or organism. Mass spectrometry (MS) as a robust, sensitive and precise technique, enables the study of proteomes providing information on protein abundances, post-translational modifications  and protein-protein interaction networks. In shotgun proteomics, proteins are first digested with protease, and then the resulting peptides are separated by liquid chromatography and analyzed by MS. As a result, in a large-scale proteomic experiment, thousands of different proteins can be identified and quantified, which can be utilized to i.a. characterize two biological states, elucidate mechanisms of disease, detect diagnostic markers or drug targets.

MS is also a powerful tool to analyze single protein providing mass determination of intact molecule, confirmation of protein identification, characterization of PTMs, detection of potential truncations and mutations.


Services offered by the Proteomics and Mass Spectrometry Core Facility include:

•    Intact protein/peptide mass determination by ESI-MS 
Submission form (file: Form_1_Mass_determination.pdf, Form_Mass_determination.docx)   

•    Protein identification from gel bands; characterization of post-translational modifications (PTMs) of single proteins
Submission form (file: Form_ ProteinID_gel.pdf, Form_Gel_Bands.docx)

•    Global proteome profiling – identification and/or relative quantification of proteins in complex mixtures 
Submission form (file: Form_Global_proteomics.pdf, Form_Global_Proteomics.docx)

•    Protein-protein interaction (PPIs) analysis 
Submission form (file: Form_Interactome.pdf, Form_Interactome.docx)

•    Targeted proteomic analysis – data acquisition for predefined sets of peptides using parallel reaction monitoring (PRM) method
Please contact us directly.

Terms of use

All users are required to acknowledge the Core Facility if any data obtained in the facility has been used in posters, papers, and all other publications.

Please, use the wording as follows:
We acknowledge Proteomics and Mass Spectrometry Core Facility of the Malopolska Centre of Biotechnology, Jagiellonian University for mass spectrometry analysis.

Co-authorship
Apart from routine services, we also apply individual solutions to meet various research needs. Collaborative projects that require nonroutine sample preparation or extensive data analysis justifies a coauthorship on a manuscript that contains data generated in our facility.

 

Pricelist.PDF

2024:

1. Matsuda A, Plewka J, Rawski M, Mourão A, Zajko W, Siebenmorgen T, Kresik L, Lis K, Jones AN, Pachota M, Karim A, Hartman K, Nirwal S, Sonani R, Chykunova Y, Minia I, Mak P, Landthaler M, Nowotny M, Dubin G, Sattler M, Suder P, Popowicz GM, Pyrć K, Czarna A. Despite the odds: formation of the SARS-CoV-2 methylation complex. Nucleic Acids Res. 10.1093/nar/gkae165. 
2. Łabuz J, Banaś AK, Zgłobicki P, Bażant A, Sztatelman O, Giza A, Lasok H, Prochwicz A, Kozłowska-Mroczek A, Jankowska U, Hermanowicz P. Phototropin2 3'UTR overlaps with the AT5G58150 gene encoding an inactive RLK kinase. BMC Plant Biol. 10.1186/s12870-024-04732-2. 
 

2023:

1. Poplawski P, Alseekh S, Jankowska U, Skupien-Rabian B, Iwanicka-Nowicka R, Kossowska H, Fogtman A, Rybicka B, Bogusławska J, Adamiok-Ostrowska A, Hanusek K, Hanusek J, Koblowska M, Fernie AR, Piekiełko-Witkowska A. Coordinated reprogramming of renal cancer transcriptome, metabolome and secretome associates with immune tumor infiltration. Cancer Cell Int.  10.1186/s12935-022-02845-y.  
2. Surman M, Jankowska U, Wilczak M, Przybyło M. Similarities and Differences in the Protein Composition of Cutaneous Melanoma Cells and Their Exosomes Identified by Mass Spectrometry. Cancers (Basel).  10.3390/cancers15041097 
3. Mucha O, Skupien-Rabian B, Slota A, Trzos K, Pydyn N, Podlewski B, Jura J, Kotlinowski J. Hepatic Mcpip1 regulates adaptation to food restriction in mice. Acta Biochim Pol. 10.18388/abp.2020_6819.  
4. Kulig K, Kowalik K, Surowiec M, Karnas E, Barczyk-Woznicka O, Zuba-Surma E, Pyza E, Kozik A, Rapala-Kozik M, Karkowska-Kuleta J. Isolation and Characteristics of Extracellular Vesicles Produced by Probiotics: Yeast Saccharomyces boulardii CNCM I-745 and Bacterium Streptococcus salivarius K12. Probiotics Antimicrob Proteins. 10.1007/s12602-023-10085-3 
5. Grygier P, Pustelny K, Nowak J, Golik P, Popowicz GM, Plettenburg O, Dubin G, Menezes F, Czarna A. Silmitasertib (CX-4945), a Clinically Used CK2-Kinase Inhibitor with Additional Effects on GSK3β and DYRK1A Kinases: A Structural Perspective. J Med Chem. 10.1021/acs.jmedchem.2c01887 
6. Sarewicz M, Szwalec M, Pintscher S, Indyka P, Rawski M, Pietras R, Mielecki B, Koziej Ł, Jaciuk M, Glatt S, Osyczka A. High-resolution cryo-EM structures of plant cytochrome b6f at work. Sci Adv.  10.1126/sciadv.add9688 
7. Fic E, Cieślik A, Figiel M, Dziedzicka-Wasylewska M. Identification of mitogen-activated protein kinase phosphatase-1 (MKP-1) protein partners using tandem affinity purification and mass spectrometry. Pharmacol Rep. 10.1007/s43440-023-00471-7 
8. Śmiałek-Bartyzel J, Bzowska M, Mężyk-Kopeć R, Kwissa M, Mak P. BacSp222 bacteriocin as a novel ligand for TLR2/TLR6 heterodimer. Inflamm Res. 10.1007/s00011-023-01721-3 
9. Mazur P, Dumnicka P, Tisończyk J, Ząbek-Adamska A, Drożdż R. SDS Electrophoresis on Gradient Polyacrylamide Gels as a Semiquantitative Tool for the Evaluation of Proteinuria. Diagnostics (Basel). 10.3390/diagnostics13091513 
 

2022:

1. Ravichandran KE, Kaduhr L, Skupien-Rabian B, Shvetsova E, Sokołowski M, Krutyhołowa RC, Kwasna D, Brachmann C, Lin S, Guzman Perez S, Wilk P, Kösters M, Grudnik P, Jankowska U, Leidel SA, Schaffrath R, Glatt S. E2/E3-independent ubiquitin-like protein conjugation by Urm1 is directly coupled to cysteine persulfidation. EMBO J. 10.15252/embj.2022111318 
2. Rząca C, Jankowska U, Stępień EŁ. Proteomic profiling of exosomes derived from pancreatic beta-cells cultured under hyperglycemia. Bio-Algorithms and Med-Systems. 10.2478/bioal-2022-0085 
3. Kubiak-Szymendera M, Skupien-Rabian B, Jankowska U, Celińska E. Hyperosmolarity adversely impacts recombinant protein synthesis by Yarrowia lipolytica-molecular background revealed by quantitative proteomics. Appl Microbiol Biotechnol. 10.1007/s00253-021-11731-y 
4. Ibáñez A, Skupien-Rabian B, Jankowska U, Kędracka-Krok S, Zając B, Pabijan M. Functional Protein Composition in Femoral Glands of Sand Lizards (Lacerta agilis). Molecules. 10.3390/molecules2707237 
5. Surman M, Kędracka-Krok S, Wilczak M, Rybczyński P, Jankowska U, Przybyło M. Comparative Proteomic Profiling of Ectosomes Derived from Thyroid Carcinoma and Normal Thyroid Cells Uncovers Multiple Proteins with Functional Implications in Cancer. Cells. 10.3390/cells11071184 
6. Lin TY, Smigiel R, Kuzniewska B, Chmielewska JJ, Kosińska J, Biela M, Biela A, Kościelniak A, Dobosz D, Laczmanska I, Chramiec-Głąbik A, Jeżowski J, Nowak J, Gos M, Rzonca-Niewczas S, Dziembowska M, Ploski R, Glatt S. Destabilization of mutated human PUS3 protein causes intellectual disability. Hum Mutat. 10.1002/humu.24471 
7. Kulig K, Karnas E, Woznicka O, Kuleta P, Zuba-Surma E, Pyza E, Osyczka A, Kozik A, Rapala-Kozik M, Karkowska-Kuleta J. Insight Into the Properties and Immunoregulatory Effect of Extracellular Vesicles Produced by Candida glabrata, Candida parapsilosis, and Candida tropicalis Biofilms. Front Cell Infect Microbiol. 10.3389/fcimb.2022.879237 
8. Śmiałek J, Bzowska M, Hinz A, Mężyk-Kopeć R, Sołtys K, Mak P. Bacteriocin BacSp222 and Its Succinylated Forms Exhibit Proinflammatory Activities Toward Innate Immune Cells. J Inflamm Res.  10.2147/JIR.S362066


2021:

1. Kumar M, Markiewicz-Mizera J, Janna Olmos JD, Wilk P, Grudnik P, Biela AP, Jemioła-Rzemińska M, Górecki A, Chakraborti S, Heddle JG. A single residue can modulate nanocage assembly in salt dependent ferritin. Nanoscale. 10.1039/d1nr01632f 
2. Pinski A, Betekhtin A, Skupien-Rabian B, Jankowska U, Jamet E, Hasterok R. Changes in the Cell Wall Proteome of Leaves in Response to High Temperature Stress in Brachypodium distachyon. Int J Mol Sci. 10.3390/ijms22136750 
3. Smejda M, Kądziołka D, Radczuk N, Krutyhołowa R, Chramiec-Głąbik A, Kędracka-Krok S, Jankowska U, Biela A, Glatt S. Same but different - Molecular comparison of human KTI12 and PSTK. Biochim Biophys Acta Mol Cell Res. 10.1016/j.bbamcr.2020.118945 
4. Zacchini F, Heber MF, Arena R, Radczuk N, Jankowska U, Ptak GE. Perturbations of the hepatic proteome behind the onset of metabolic disorders in mouse offspring developed following embryo manipulation. Theriogenology. doi: 10.1016/j.theriogenology.2021.05.022 
5. Surman M, Kędracka-Krok S, Jankowska U, Drożdż A, Stępień E, Przybyło M. Proteomic Profiling of Ectosomes Derived from Paired Urothelial Bladder Cancer and Normal Cells Reveals the Presence of Biologically-Relevant Molecules. Int J Mol Sci. 10.3390/ijms22136816 
6. Jankowska U, Skupien-Rabian B, Swiderska B, Prus G, Dziedzicka-Wasylewska M, Kedracka-Krok S. Proteome Analysis of PC12 Cells Reveals Alterations in Translation Regulation and Actin Signaling Induced by Clozapine. Neurochem Res. 10.1007/s11064-021-03348-4
 

2020:

1. Pabis M, Termathe M, Ravichandran KE, Kienast SD, Krutyhołowa R, Sokołowski M, Jankowska U, Grudnik P, Leidel SA, Glatt S. Molecular basis for the bifunctional Uba4-Urm1 sulfur-relay system in tRNA thiolation and ubiquitin-like conjugation. EMBO J. 10.15252/embj.2020105087 

 

We currently have no vacancies.

Proteomics and Mass Spectrometry Core Facility
Malopolska Centre of Biotechnology
Room: MCB 1/40
Phone: +48 12 664 6096
Gronostajowa 7A
30-387 Kraków